Using hidden Markov model to uncover processing states from eye movements in information search tasks

نویسندگان

  • Jaana Simola
  • Jarkko Salojärvi
  • Ilpo Kojo
چکیده

We study how processing states alternate during information search tasks. Inference is carried out with a discriminative hidden Markov model (dHMM) learned from eye movement data, measured in an experiment consisting of three task types: (i) simple word search, (ii) finding a sentence that answers a question and (iii) choosing a subjectively most interesting title from a list of ten titles. The results show that eye movements contain necessary information for determining the task type. After training, the dHMM predicted the task for test data with 60.2% accuracy (pure chance 33.3%). Word search and subjective interest conditions were easier to predict than the question–answer condition. The dHMM that best fitted our data segmented each task type into three hidden states. The three processing states were identified by comparing the parameters of the dHMM states to literature on eye movement research. A scanning type of eye behavior was observed in the beginning of the tasks. Next, participants tended to shift to states reflecting reading type of eye movements, and finally they ended the tasks in states which we termed as the decision states. 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Comparing the Bidirectional Baum-Welch Algorithm and the Baum-Welch Algorithm on Regular Lattice

A profile hidden Markov model (PHMM) is widely used in assigning protein sequences to protein families. In this model, the hidden states only depend on the previous hidden state and observations are independent given hidden states. In other words, in the PHMM, only the information of the left side of a hidden state is considered. However, it makes sense that considering the information of the b...

متن کامل

3D Hand Motion Evaluation Using HMM

Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...

متن کامل

The Path to Click: Are You On It? Savannah Wei Shi and Michael Trusov [PRELIMINARY DRAFT – PLEASE DO NOT CITE OR QUOTE]

The authors investigate the information search process that consumers engage in when visually inspecting search engine result pages (SERPs). Eye-tracking data are collected and matched with the textual content of the SERPs (i.e., listings presented on the page). A two-state hidden Markov model of listing inspection choice and gaze duration is developed to capture the latent information processi...

متن کامل

Relevance Feedback from Eye Movements for Proactive Information Retrieval

We study whether it is possible to infer from eye movements measured during reading what is relevant for the user in an information retrieval task. Inference is made using hidden Markov and discriminative hidden Markov models. The result of this feasibility study is that prediction of relevance is possible to a certain extent, and models benefit from taking into account the time series nature o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cognitive Systems Research

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2008